

Tutorial => (xn) Cauchy => (xn) convergent, say to some x EIR.

To find x , the recursive relation $X_n = \frac{1}{2}(X_{n-1} + X_{n-1}) \Rightarrow X = \frac{1}{2}(X + X)$ NOT useful. Since Lim $(x_n) = x$, any subseq. (x_{n_k}) also converges to x . Consider the odd subseq. $(X_{2k-1})_{n\in\mathbb{N}}$. $\frac{1}{2^{2k-3}}$ = 1 l $X_{2k-1} = 1 + \frac{1}{2} + \frac{1}{2^3} + \dots + \frac{1}{2^{2k-3}} = 1 + \frac{1}{1 - \frac{1}{4}}$ k 30
 \Rightarrow $x = lim (x_{2k-1}) = 1 + \frac{72}{3/4} = \frac{5}{3}$ <u>Limit of functions</u> (Ch. 4) GOAL: Define $\lim_{x\to c} f(x)$ for functions $f: A \subseteq \mathbb{R} \to \mathbb{R}$ study its properties Basic Idea: $\lim_{x \to c} f(x) = L'$ and $f(x) \approx L$ wheneven $x \approx C$ Need $X \in A$ to be defined This motivates the following $Defⁿ$: Let $A \subseteq R$ be an arbitrary subset (not nec. closed/open). We say C G R is a cluster point of A if V 8 > 0, $\exists x = x(S) \in A$ st. $|x-c| < \delta$ and $x \neq c$ s mall $x \in A$ $\begin{array}{ccc} \sim & & & \\ \times & & & \rightarrow & \mathbb{R} \end{array}$ S 8 [Intuitively, \exists points in A, other than c itself, close to c .] Examples: $A = \{0, 1\}$ has \underline{N} cluster pt. $\frac{C}{(n)} = \frac{C_0}{(n)} = \frac{1}{(n)}$ R $A = \{a_1, \ldots, a_n\}$ has N^0 cluster pt. . A = IN has No cluster pt. (Ex: Prove this)

 $A = \left\{\frac{1}{n} : h \in \mathbb{N}\right\}$ has 1 cluster pt. $C = 0$

