Recall: Cauchy seq. (Xn)	lim(xn) = x
$Def^{n}: \forall \epsilon > 0, \exists H = H(\epsilon) \in IN s.t.$	$\underline{Def^{2}}: \forall \xi > 0, \exists k = k(\xi) \in (N \ s.t.$
Xn - Xm < E \ \ N,m > H	xn-x1<€ ∀n≥K
<u>Remarks:</u> (1) We do not need to know X in advance in the definition	
of Cauchy sequences.	
(2) The "m" and "n" can be freely chosen (independent of each other)	
in the def? of Cauchy seq.	
E.g.) It's Not enough to have, say, Xn+1-Xn1 <e 3h.<="" td="" yn=""></e>	
[Ex: Find a counter example .]	
Cauchy Criteria: (Xn) Cauchy <=> (Xn) convergent	
Note: Because it's an "if and only if" statement, one can use it to	
show (Xn) is convergent OR divergent.	
<u>Example:</u> Let X ₁ := 1, X ₂ := 2, X _n := ½(x _{n-1} + X _{n-2}) ∀n >3.	
Show that (Xn) is convergent, and find lim (Xn).	
Proof: Write out a few terms:	
$(X_n) = (1, 2, 1.5, 1.75, 1.625,)$	
χ_1^{1} $\chi_3^{1.5}$ 1.625 χ_1^{1} χ_3^{1} χ_5^{2}	
, χ _μ =ι,75 χ ₂ ≈ 1	
M.I. => $ X_{n+1} - X_n = \frac{1}{2^{n-1}}$ $\forall n \in iN$	
So, $ X_{n+2} - X_{n+1} = \frac{1}{2} X_{n+1} - X_n = (X_n)$ contractive (w). $C = \frac{1}{2}$)	
and the same X EIR	

Tutorial => (Xn) Cauchy => (Xn) convergent, say to some X & IR.

To find x, the remains relation $X_n = \frac{1}{2}(X_{n-1} + X_{n-2}) \Longrightarrow X = \frac{1}{2}(X + X)$ NOT useful . Since lim (xn) = x, any subseq. (Xnk) also converges to x. Consider the odd subseq. (X 2k-1) hein . $X_{2k-1} = 1 + \frac{1}{2} + \frac{1}{2^3} + \dots + \frac{1}{2^{2^{k-3}}} = 1 + \frac{\frac{1}{2}(1 - \frac{1}{4^{k-1}})}{1 - \frac{1}{4^k}}$ aS K-300 $\chi = \lim (X_{2k-1}) = 1 + \frac{1/2}{3/4} = \frac{5}{3} \neq \frac{1}{3}$ € Limit of functions (Cn.4) GOAL³ Define $\lim_{x \to c} f(x)$ for functions $f: A \subseteq \mathbb{R} \to \mathbb{R}$ l study its properties. Basic Idea: " $\lim_{x \to C} f(x) = L'' \iff f(x) \approx L$ wheneven $x \approx C$ Need XEA to be defined This motivates the following: Def=: Let A = iR be an arbitrary subset (not nec. closed/open). We say C & iR is a cluster point of A if $\forall s > 0, \exists x = x(s) \in A$ st. |x - c| < s and $x \neq c$ "Smc11" $\xrightarrow{C} \times \in \mathbb{A}$ [Intuitively,] points in A, other than C itself, close to C.] Examples: A = $\{0,1\}$ has No cluster pt. (x) = (x) = R· A = { a a N has No cluster pt. · A = IN has No cluster pt. (Ex: Prove this)

• $A = \{\frac{1}{n} : h \in \mathbb{N}\}$ has 1 cluster pt. C = 0

